近幾年興起的貼片式LED支架一般采用高溫改性工程塑膠料,以PPA(聚鄰苯二甲酰胺)樹脂為原料,通過添加改性填料來增強PPA原料的某些物理、化學性質,從而使PPA材料更加適合注塑成型及貼片式LED支架的使用。PPA塑料導熱性能很低,其散熱主要通過金屬引線框架進行,散熱能力有限,只適用于小功率LED封裝。
金屬芯印刷電路板:制造工藝復雜實際應用較少
鋁基PCB的加工制造過程復雜、成本高,鋁的熱膨脹系數與芯片材料相差較大,實際應用中較少采用。高功率LED封裝大多采用此種PCB,其價格介于中、高價位間。
當前生產上通用的大功率LED散熱PCB,其絕緣層導熱系數極低,而且由于絕緣層的存在,使得其無法承受高溫焊接,限制了封裝結構的優(yōu)化,不利于LED散熱。
硅基封裝PCB:面臨挑戰(zhàn)良品率低于60%
硅基PCB在絕緣層、金屬層、導通孔的制備方面都面臨挑戰(zhàn),良品率不超過60%。以硅基材料作為LED封裝PCB技術,在半導體業(yè)界LED行業(yè)有所應用。硅基PCB的導熱性能與熱膨脹性能都表明了硅是與LED較匹配的封裝材料。硅的導熱系數為140W/m·K,應用于LED封裝時,所造成的熱阻只有0.66K/W;而且硅基材料已被大量應用在半導體制程及相關封裝領域,所涉及相關設備及材料已相當成熟。因此,若將硅制作成LED封裝PCB,容易形成量產。
不過,LED硅PCB封裝仍有許多技術問題。例如,材料方面,硅材容易碎裂,且機構強度也有問題。結構方面,硅盡管是優(yōu)良導熱體,但絕緣性不良,必須做氧化絕緣處理。此外,其金屬層需采用濺鍍結合電鍍的方式制備,導電孔需采用腐蝕的方法進行??傮w看來,絕緣層、金屬層、導通孔的制備都面臨挑戰(zhàn),良品率不高。
陶瓷封裝PCB:提升散熱效率滿足高功率LED需求
配合高導熱的陶瓷基體顯著提升了散熱效率,是最適合高功率、小尺寸LED發(fā)展需求的產品。陶瓷PCB具有新的導熱材料和新的內部結構,彌補了鋁金屬PCB所具有的缺陷,從而改善PCB的整體散熱效果。目前可用作散熱PCB的陶瓷材料中,BeO雖然導熱系數高,但其線膨脹系數與硅相差很大,且制造時有毒,限制了自身的應用;BN具有較好的綜合性能,但作為PCB材料,沒有突出的優(yōu)點,而且價格昂貴,目前只是處于研究和推廣中;碳化硅具有高強度和高熱導率,但其電阻和絕緣耐壓值較低,金屬化后鍵合不穩(wěn)定,會引起熱導率和介電常數的改變,不宜作為絕緣性封裝PCB材料。Al2O3陶瓷基片雖是目前產量最多、應用最廣的陶瓷基片,但由于其熱膨脹系數相對Si單晶偏高,導致Al2O3陶瓷基片并不太適合在高頻、大功率、超大規(guī)模集成電路中使用。A1N晶體具有高熱導率,被認為是新一代半導體PCB和封裝的理想材料。
AlN陶瓷PCB從20世紀90年代開始得到廣泛地研究而逐步發(fā)展起來,是目前普遍認為很有發(fā)展前景的電子陶瓷封裝材料。AlN陶瓷PCB的散熱效率是Al2O3的7倍之多,AlN陶瓷PCB應用于高功率LED的散熱效益顯著,進而大幅提升LED的使用壽命。
基于板上封裝技術而發(fā)展起來的直接覆銅陶瓷板(DBC)也是一種導熱性能優(yōu)良的陶瓷PCB。DBC在制備過程中沒有使用黏結劑,因而導熱性能好,強度高,絕緣性強,熱膨脹系數與Si等半導體材料相匹配。然而,陶瓷PCB與金屬材料的反應能力低,潤濕性差,實施金屬化頗為困難,不易解決Al2O3與銅板間微氣孔產生的問題,這使得該產品的量產與良品率受到較大的挑戰(zhàn),仍然是國內外科研工作者研究的重點。目前國內也只有斯利通領頭的寥寥數家能夠量產。
DPC陶瓷PCB又稱直接鍍銅陶瓷板,DPC產品具備線路精準度高與表面平整度高的特性,非常適用于LED覆晶/共晶工藝,配合高導熱的陶瓷基體,顯著提升了散熱效率,是最適合高功率、小尺寸LED發(fā)展需求的跨時代產物。